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Abstract:  The Java programming language [1], 
widely recognized as the preferred programming lan-
guage for all varieties of information processing appli-
cations, typically manifests a two-fold improvement in 
developer productivity and a five- to ten-fold improve-
ment in software reuse, integration, and maintenance 
activities in comparison with legacy systems built 
using C or C++. Java is especially relevant to multi-
processor applications, as the language has built-in 
support for multithreading, synchronization, and 
shared access to common objects.

The full power of Java is relevant to many high integ-
rity systems, including applications in ballistic missile 
defense, radar subsystems in support of air traffic 
control, and rail traffic scheduling. But using Java in 
these sorts of high integrity applications requires spe-
cial attention to selection of an appropriate Java vir-
tual machine and special development methodologies 
[2, 3].

This paper discusses some of the special challenges 
of using Java in high integrity real-time systems, along 
with recommended practices for dealing with these 
challenges. 
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1. Relevance of Dynamic Memory Management
The designers of the object-oriented Java language 
made a distinction between primitive types and 
objects. Variables representing the primitive types, 
which include int, char, float, and double, are always 
allocated on the Java thread’s stack. Java variables 
representing objects are really just references (point-
ers). The Java objects referred to by Java reference 
variables are generally allocated from a garbage-col-
lected heap.1 The syntax of Java makes it very clear 
when objects are allocated. However, a cursory 
review of Java source code may overlook many of the 

1. Sophisticated compiler optimizations are able to 
detect that many temporary objects can be allo-
cated and reclaimed from the thread’s stack mem-
ory.
allocations that it embodies. Each of the Java source 
code examples shown below results in allocation of at 
least one object:

// Explicit allocation of HashMap
HashMap m = new HashMap();

// Implicit allocation of StringBuilder and String
System.out.println(“the answer is “ + x);

// Implicit allocation of Integer(13) if foo() is declared to expect 
// an object argument. This is known as auto-boxing.
// void foo(Integer);
foo(13);

// Implicit allocation and initialization of an Object[3] array, and
// the three Integer objects to be represented by this array if 
// the baz() method is declared to expect a variable number 
// of arguments. This also is known as auto-boxing.
baz(1, 2, 3);

// Probably does an allocation of internal data “record” to 
// represent the pairing between key and value within the 
// hash table represented by the variable m. The specification
// for this method does not make clear when internal data
// structures are allocated.
m.put(key, value);

In Java, it is not considered important to syntactically 
identify every object allocation because the program-
mer who writes code to force creation of objects is not 
responsible for reclaiming the object’s memory when 
the object is no longer required. Instead, the tracing 
garbage collector takes full responsibility for automati-
cally detecting the death of objects and reclaiming 
their memory.

The Java style of dynamic memory management has 
numerous benefits over the more traditional approach 
of explicitly allocating and deallocating objects as is 
done in Ada, C, and C++. Particular benefits of the 
Java approach are identified below:

No dangling pointers. The term dangling pointer
refers to a situation in which a pointer to an object per-
sists longer than the object itself. Once the object is 
deallocated, any pointers that still refer to that object 
are considered to “dangle”, because they point to 
memory that is no longer dedicated to the intended 
purpose.



Full type safety. Unlike Ada, C, and C++, Java 
guarantees that a variable declared as a reference to 
a particular type only points to objects of that type. 
Languages that permit dangling pointers generally 
allow the possibility that a deallocated object will be 
reallocated as a different type that is incompatible with 
the original object. After the deallocated object’s 
memory is reallocated, dangling pointers to the origi-
nal object now refer to the “wrong type”.

Avoidance of memory leaks. The term memory 
leak represents a situation in which allocated objects 
are never reclaimed, even after they no longer serve a 
useful purpose. With Java, an “accurate” garbage col-
lector guarantees to find all garbage, where garbage 
is defined as objects that are not reachable by follow-
ing a chain of pointers starting with one of the sys-
tem’s root pointers and comprising zero or more non-
garbage objects. Not all Java garbage collectors 
promise to accurately identify all garbage, but those 
designed for mission critical operation in limited mem-
ory embedded systems generally do. It is important to 
recognize that memory leaks may exist even in sys-
tems that incorporate an accurate garbage collector. 
This is because certain objects which are considered 
live (reachable) by the garbage collector may actually 
have no useful role in ongoing computations. Though 
Java programmers do not explicitly deallocate dead 
objects, it is important that they overwrite references 
to objects no longer needed with null in order to 
enable the garbage collector to reclaim their memory. 

Memory defragmentation. With explicitly man-
aged memory heaps, the allocation pool may become 
fragmented over time. Once the heap has become 
fragmented, allocation requests may fail even though 
there may exist an abundance of available memory. 
The integration of a garbage collector within the 
implementation of Java makes it possible to imple-
ment memory defragmentation as a peripheral benefit 
of garbage collection. Not all Java garbage collectors 
defragment memory, but those designed to support 
mission critical operation in limited-memory embed-
ded devices generally do.

Ease of integration. An important attribute of 
object-oriented programming environments is the abil-
ity to easily integrate independently developed soft-
ware components. With legacy languages, a difficulty 
of integrating independently developed components is 
that each new integration requires the design and 
implementation of a tailored protocol to allow deallo-
cation of the objects allocated by one component but 
accessed by other components after the objects are 
no longer needed by any components. Designing, 
implementing, and debugging these protocols is very 
difficult, and this represents a significant impediment 
to the creation of large software systems through 
modular composition of independently developed 
components.
2. High Integrity Garbage Collection
When mission-critical systems are deployed as tradi-
tional Java applications, the underlying Java virtual 
machine’s garbage collection system plays a critical 
role in overall reliability, real-time responsiveness, and 
ultimately in the system’s ability to fulfill its mission.

Garbage collectors designed to support mission-criti-
cal operation must address the following issues:

1. Preemptible: if a higher priority activity needs to 
run while garbage collection is active, the higher 
priority activity must be able to preempt garbage 
collection within a predictably small amount of 
time.

2. Incremental: Whenever garbage collection is pre-
empted, it is important that the increments of work 
completed prior to the preemption are preserved 
and the garbage collector’s progress continues to 
advance when garbage collection resumes. Other-
wise, it is not possible to guarantee forward 
progress, which is necessary to assure availability 
of memory to satisfy future allocation requests.

3. Accurate: The garbage collector must guarantee to 
accurately find and reclaim all of the dead memory 
in the system. If a dead object is not reclaimed by 
the garbage collector, all of the objects reachable 
from that dead object, many of which may also be 
dead, will necessarily be retained as if they were 
alive. Thus, an inaccurate (also known as conser-
vative) garbage collector cannot guarantee avail-
ability of memory to satisfy future allocation 
requests.

4. Defragmenting: Over time, the interleaving of 
memory allocation and deallocation operations 
may create a situation in which the memory alloca-
tion pool consists of a large number of small free 
segments separated from one another by in-use 
objects. In the presence of memory fragmentation, 
the allocation pool may contain many megabytes 
of available memory, but an allocation request for 
an object of size 256 Kbytes could fail because no 
single segment of free memory is sufficiently large. 
A garbage collection system designed to support 
mission-critical execution must defragment mem-
ory or provide some mechanism to mitigate the 
effects of memory fragmentation.

5. Paced: To support real-time operation of mission-
critical threads which depend on the ability to allo-
cate memory in fulfilling their mission-critical objec-
tives, it is essential that the garbage collector 
reclaim memory at a pace that is consistent with 
the application’s appetite for new memory alloca-
tion. Otherwise, the mission-critical thread that 
attempts to allocate memory could become 
blocked waiting for the garbage collector to reclaim 
enough memory to satisfy its allocation request. 



3. A Mission-Critical Garbage Collector
The PERC® Ultra virtual machine has been perform-
ing real-time garbage collection in a large number of 
highly available applications for over a decade. Here, 
we provide a high-level overview of real-time garbage 
collection as it is performed by the PERC Ultra virtual 
machine.

The PERC garbage collector uses a combination of 
mark-and-sweep and copying garbage collection 
techniques. Mark-and-sweep garbage collection is 
illustrated in Figure 1. In this illustration, the blue 
objects represent the free pool. The PERC allocator 
maintains several free lists, each one dedicated to dif-
ferent size ranges. For illustrative purposes, only one 
free list is shown here. The free lists are doubly linked 
to allow free segments to be removed, coalesced with 
newly found neighboring garbage, and inserted onto 
an alternative free list in constant time.

Black arrows represent references (pointers) from one 
object to another. Red arrows represent links on the 
scan list, a list that represents all of the objects that 
the garbage collector has marked as being in use. 
The garbage collector starts its search for in-use 
objects by marking the objects that are referenced 
directly from the root pointers. Then it scans those 
objects to see what they point to, and marks each of 
those objects as in-use also. It continues this process 
until all marked objects have been scanned. At this 
point, any memory that is not on the free list and is not 

Figure 1. Incremental Mark and Sweep Garbage Collection
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marked is treated as garbage. All such memory is 
linked onto the free list. 

The red objects represent objects that the garbage 
collector has identified as being in use (live or reach-
able, and thus retained). Every object recognized as 
live is placed on a scan list linked through the scan-list 
field within the object’s header. The act of placing an 
object on the scan list is known as marking. A marked 
object is identified by a non-null value in the scan-list 
field of the object’s header.

The scan list is represented by head and tail pointers. 
When a new object is marked, it is added to the tail of 
the existing list. For each object on the scan list, the 
garbage collector examines (scans) the object’s con-
tents to determine which additional objects might be 
referenced by this object. The garbage collector 
marks each object referenced from this marked object 
if that referenced object is not already marked. 
Figure 1 distinguishes objects that have been 
scanned from those that have been marked but not 
yet scanned.

Figure 1 represents a snapshot of the garbage collec-
tor’s incremental progress. At the time of the snap-
shot, object A is considered marked and scanned. 
Objects B and C are marked but not yet scanned. The 
scan list holds only objects B and C. When garbage 
collection resumes, the collector will scan object B, 
which results in the marking of object D.

With traditional stop-and-wait garbage collectors, all 
application threads are suspended while garbage col-
lection is performed. Though this simplifies garbage 
collection, the delays on application thread processing 
imposed by stop-and-wait garbage collectors can be 
quite long, lasting tens of seconds for gigabyte-sized 
heaps. The PERC garbage collector avoids these 
delays by allowing application threads to preempt the 
garbage collector.

Suppose, while the garbage collector is suspended in 
the state illustrated by Figure 1, that an application 
thread performs the following sequence of actions:

1. Fetch the reference to object D into a local variable 
by reading the relevant field of object B.

2. Overwrite the same field of object B with the value 
null.

3. Copy the object D reference from its local variable 
into a field of object A.

4. Overwrite the local variable that refers to object D 
with a null value.

Following this sequence, the object D is still live, 
because it is reachable from A, which is live. However, 
when the garbage collector resumes operation, it will 
not scan object A, because object A previously 
scanned. To make the mark-and-sweep garbage col-
lection technique incremental, the PERC virtual 



machine incorporates a write barrier. Each time a 
pointer field of an object is overwritten, the virtual 
machine marks the object referenced by the new 
value of the pointer field.

Copying garbage collection is shown in Figure 2. With 
copying garbage collection, live objects are incremen-
tally copied out of one region of memory, named from-
space, into another region of memory, named to-space. 
In this illustration, there are three live objects A, B, and 
C. Objects B and C have been copied to consecutive 
memory locations in to-space, represented by the 
objects labeled B’ and C’ respectively. Memory has 
been reserved for copying object A to the location 
labeled A’, but that object has not yet been copied.

After all live objects have been copied out of from-
space, we exchange the names given to to-space and 
from-space, and satisfy subsequent allocation 
requests from the new to-space. This has the effect of 
defragmenting the free pool. Note that the four 
unused memory segments in the original from-space
are now combined into one large contiguous free seg-
ment in the new to-space. 

If a high-priority thread preempts copying garbage col-
lection in the state illustrated by Figure 2, the PERC 
virtual machine will redirect that thread’s attempts to 
access object A’ to object A. Likewise, it will redirect all 
attempts to access objects B or C to objects B’ and C’
respectively. The PERC virtual machine uses both 
read and write barriers to make this incremental copy-
ing garbage collection work reliably.

A key benefit of copying garbage collection is that it 
fully defragments memory with each pass of the gar-
bage collector. However, the cost of providing this 
benefit is that memory utilization can never be any 
higher than 50%. In contrast, mark-and-sweep gar-
bage collection typically achieves utilization of 60-
75%. However, because it does not defragment mem-
ory, the worst-case utilization of a mark-and-sweep 
garbage collector may be arbitrarily poor (less than 
5%). To combine the good average-case utilization of 

Figure 2. Fully Copying Garbage Collection
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mark-and-sweep garbage collection with the reliability 
guarantees of copying garbage collection, the PERC 
virtual machine uses a mostly stationary garbage col-
lection technique, illustrated in Figure 3. All of memory 
is divided into N equal-sized regions. Each time the 
PERC virtual machine begins another garbage collec-
tion pass, it applies a number of heuristics to select 
one of the regions to be defragmented. When config-
uring the PERC virtual machine, system integrators 
can set the number of regions to two so that all of 
memory is defragmented on each garbage collection 
pass, or can disable defragmentation entirely to maxi-
mize expected memory utilization. This allows system 
integrators to tune the PERC virtual machine for the 
levels of reliability and memory efficiency that are 
most appropriate for their given application.

4. Pacing Garbage Collection
The goals of real-time garbage collection are to 
make sure memory is available for allocation at 
the times the application needs to allocate with-
out interfering with any task’s compliance with 
real-time constraints. A real-time garbage collec-
tor must work incrementally, dividing its total 
effort into many small bursts of work. These 
bursts of work must be scheduled using the real-
time scheduler so as to make sure that the real-
time garbage collector makes timely forward 
progress while at the same time making sure that 
the garbage collector’s CPU-time utilization does 
not intrude upon times set aside for execution of 
application software.

In order to make sure that garbage collection 
makes adequate forward progress, the total effort 
required to perform complete garbage collection 

Figure 3. Incremental Mark and Sweep Garbage Collection
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must be understood. Suppose, for example, that 
the total available memory is M bytes and that 
complete garbage collection is known to require 
S seconds of CPU-time. Suppose further that the 
total memory requirement of the system’s real-
time activities is U total bytes, and that the com-
bined allocation throughput is V total bytes of 
allocation per second. Finally, let R represent the 
fraction of the CPU time that is dedicated to gar-
bage collection. Note that the real time required 
to complete incremental garbage collection is S / 
R.

Consider the state of memory immediately fol-
lowing completion of garbage collection. In the 
worst steady-state case, there are a total of U
bytes of live memory and V (S / R) bytes of dead 
memory currently occupying the heap. If we start 
the next garbage collection pass as soon as the 
first has completed, an additional V (S / R) bytes 
of memory will be allocated while this garbage 
collection pass is executing. Thus, the size of the 
space required to support this workload, M, mea-
sured in bytes, must be greater than or equal to 
U + 2V(S/R). Based on the combined total mem-
ory requirement and maximum allocation rates 
described above, the minimum fraction of CPU 
time that must be spent in garbage collection is 
given by:

Note that R is proportional to the maximum rate 
at which memory is allocated multiplied by the 
total time required to perform a stop-and-wait 
garbage collection pass. R is inversely propor-
tional to the difference between the total amount 
of available memory and the maximum amount 
of live memory.

When targeting a virtual machine designed to 
support deployment of high integrity Java appli-
cations, it is important that the virtual machine 
vendor be able to quantify upper bounds on the 
amount of CPU time required to perform a com-
plete garbage collection, and offer the ability to 
control when this CPU time is consumed, at what 
priorities, and at what preemption latency.

At the same time, a complete analysis of the sys-
tem’s real-time behavior also requires that devel-
opers obtain upper bounds on the amount of 
memory retained as live by the application, and 
on the rate at which new objects are allocated.

The objective of garbage collection pacing is to 
make sure that garbage collection gets enough 
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increments of CPU time to make sure it consis-
tently replenishes the allocation pool before the 
available supply of memory has been exhausted. 
Figure 4 shows a simulated air traffic control 
workload with real-time garbage collection run-
ning under the direction of a real-time pacing 
agent. This particular application is running in a 
fairly predictable steady state as characterized 
by the following observations. First, the slope of 
the yellow chart, which represents the amount of 
memory available for allocation, is roughly con-
stant whenever garbage collection is idle. This 
means the application’s allocation rate is approx-
imately constant. Second, the heights of the yel-
low chart’s peaks are roughly identical. This 
means the amount of live memory retained by 
the application is roughly constant. In other 
words, the application is allocating new objects at 
approximately the same rate it is discarding old 
objects. Finally, the percentage of CPU time 
required for application processing is well 
behaved, ranging from about 20% to 50%.

Note that garbage collection is idle most of the 
time. As memory becomes more scarce, garbage 
collection begins to run. When garbage collection 
runs, it interferes with some, but not all, of the 
real-time application processing. For this reason, 
a slight dip in application processing each time 
the garbage collector, represented by the occa-
sional red upward spikes, runs is evident. Also 
evident is a tendency for application processing 
to briefly increase following each burst of gar-
bage collection. This is because the preempted 
application needs to perform a small amount of 
extra work to catch up with real-time scheduling 
constraints following each preemption. If properly 
configured, the pacing agent will carefully avoid 

Figure 4. Pacing of Garbage Collection



delaying the application threads by any more 
than the allowed scheduling jitter.

5. Multiprocessor Considerations
The Java language specification includes compro-
mises intended to enable portable deployment of the 
Java run-time environment on many different CPU 
architectures and operating systems. One such com-
promise is the restriction to only ten priorities, with no 
guarantee that higher priority threads will be sched-
uled ahead of lower priority threads. Further, the Java 
language specification does not guarantee that Java’s 
built-in synchronization locks will implement priority 
inheritance.

Vendors of Java virtual machines targeted to high 
integrity real-time applications generally constrain 
scheduling and synchronization behavior beyond 
what is required by the Java Language Specification. 
Nevertheless, it is important to understand the sched-
uling model implemented by a particular Java Virtual 
Machine and tailor application code to that model. 

1. How many priorities does the virtual machine sup-
port?

2. Does the virtual machine’s scheduler strictly honor 
priorities?

3. Does the virtual machine provide API support to 
bind particular Java threads to specific processor 
cores or core subsets?

4. Does the virtual machine allow developers to bind 
particular threads to particular processors?

5. Does the virtual machine implement priority inherit-
ance? How does the virtual machine characterize 
priority inheritance behavior on a multiprocessor 
system if some threads are bound to particular 
cores?

6. How concurrent is garbage collection? For a given 
heap size, does multi-core garbage collection of 
that heap run N times faster than single-processor 
garbage collection, where N is the number of pro-
cessor cores? If not N times faster, what are the 
limiting factors?

7. Are all of the virtual machine’s background infra-
structure activities, including garbage collection 
and JIT compilation, easily understood and analyz-
able as part of the complete system’s real-time 
workload?

8. Depending on the underlying scheduling mecha-
nism, what is the theory for analysis of schedulabil-
ity?

Note that analysis of real-time scheduling becomes 
much more difficult on a multiprocessor system and 
considerable care must be exercised to assure com-
pliance with hard real-time deadlines. One difficulty 
results from tension between the main-stream objec-
tive of optimizing throughput and the real-time objec-
tive of assuring predictable scheduling behavior. To 
achieve optimal throughput, it is desirable to reduce 
the frequent migration of threads from one processor 
to another. However, this objective contradicts the 
neeed of real-time scheduling to always dedicate 
resources to the highest priority threads that are ready 
to run. Further, the analysis of a thread’s worst-case 
execution time may be significantly affected if the 
thread is allowed to migrate from one processor to 
another. One way to address these tensions is to 
allow programmers to bind certain threads to particu-
lar processors. This reduces the scheduling uncer-
tainty that results from automatic load balancing. The 
analysis of real-time schedulability can be done inde-
pendently for one processor at a time. However, this 
approach introduces a different problem. Specifically, 
if a thread bound to one processor attempts to lock a 
resource that is shared with other processors, there is 
a risk of priority inversion. If a low-priority thread run-
ning on one processor holds a lock on a resource that 
is required by a high priority thread running on a differ-
ent processor, the traditional approach to resolving 
this contention uses priority inheritance to boost the 
priority of the locking thread so that it can quickly get 
out of the way of the high-priority thread that desires 
access to the locked resource. When each thread is 
bound to a different processor, traditional priority 
inheritance does not work.

There is not universal agreement on the single best 
way to structure real-time threads for predictable and 
deterministic operation on a multiprocessor platform. 
The most important consideration is that these issues 
cannot be ignored. Architects, designers, and system 
integrators need to carefully consider the structure of 
their application code and the precise semantics of 
the services provided by the underlying platform in 
order to assure a reliable and maintainable integra-
tion. Additional discussion on topics relevant to multi-
processor embedded Java deployments is available 
in reference [4].

6. Garbage Collection in Hard Real-Time and 
Safety Critical Systems

In both hard real-time and safety critical systems, 
there is a general expectation that the system is 
proven to operate within real-time constraints. All tim-
ing constraints will be satisfied, and all specified 
actions will be performed within the specified timing 
constraints, even actions that require allocation of 
temporary objects.

Traditionally, hard real-time and safety critical systems 
have avoided all use of a dynamically managed mem-
ory allocation heap because the analysis of memory 
management services is very difficult. In particular, 
allocating an object of a particular size may require a 
search for a best fit or a first fit within a very long list of 
available free segments. The time required to suc-
cessfully find the desired free segment is unpredict-



able. And even if the developers have carefully 
proven that a sufficient amount of memory has been 
deallocated to support a subsequent memory alloca-
tion request, there is usually no guarantee that the 
memory allocation request will succeed because 
memory may have become fragmented.

Since modern automatic garbage collection systems 
are capable of defragmenting memory, some garbage 
collection enthusiasts have promoted the use of auto-
matic garbage collection in support of low-level hard 
real-time and safety-critical code. While their argu-
ment that a real-time garbage collector can be proven 
to be as safe and reliable as stack memory allocation 
is perfectly valid, this argument tends to ignore some 
of the larger issues associated with dynamic memory 
management.

In particular, to use garbage collection in a hard real-
time or safety critical system, you must prove not only 
that the garbage collection implementation is fully 
deterministic, but you must also prove that the appli-
cation’s interaction with the garbage collector is fully 
consistent with the demands placed on the garbage 
collector by the application.

Proving that a real-time garbage collector behaves 
deterministically with respect to CPU time consump-
tion, latency between object release and recycling of 
the object’s memory, relocation and coalescing of 
independent free memory fragments, and the time 
required to respond to each allocation request is all 
relatively straightforward, though such proofs may be 
tedious and very costly. The more difficult proof deals 
with the application’s behavior. All of the following 
considerations must be addressed:

1. Either the application needs to reallocate memory 
under real-time constraints or it does not.
a. If the application performs no memory realloca-

tion, then it is difficult to justify the presence of a 
real-time garbage collector because of the com-
plexity it adds to the system, and the very high 
costs of certifying the correct behavior of the 
garbage collector. If the application does not 
reallocate memory, the entirety of garbage col-
lection might be considered “dead code”.

b. If the real-time workload depends on an ability 
to reallocate memory, then the developer must 
“prove” that the application has made sufficient 
memory available to be reallocated, and has 
done so with sufficient lead time to allow the 
garbage collector to recycle the memory before 
the application demands to reallocate it.

2. One important attribute of the application that must 
be analyzed is the sizes and timings of each mem-
ory alloccation request. In a macro view, this can 
be represented as a simple ratio between bytes 
allocated per unit of wall-clock time. However, this 
macro view may hide potential fragmentation 
issues. With respect to memory fragmentation, 
allocating a 1,000-byte object every 10 ms is very 
different than allocating a single 100,000-byte 
object once per second.
a. Understanding the allocation demand is com-

paratively easy. For any valid control flow 
through any of the workload’s real-time tasks, if 
the flow includes an allocation operation, add 
the corresponding allocation to the cumulative 
allocation demand.

b. Note, of course, that a tight bound on allocation 
demand requires significantly more effort than 
accumulating all of the allocation requests on all 
possible control paths through each real-time 
task. This is because many of the control paths 
may be mutually exclusive, but determining the 
conditions on which particular paths will be 
taken is generally very difficult.

3. The second important attribute that must be ana-
lyzed by the application developers is the sizes 
and timings of object releases. In a garbage collec-
tion environment, an object is considered to be 
released when no other non-released (live) object 
points to it. In a macro view, object releases can 
also be characterized as a simple ratio between 
bytes freed per unit of time. As with the allocation 
rate, this macro view may ignore certain memory 
fragmentation considerations. Releasing one 
1,000-byte object every 10 ms may contribute to 
significantly more fragmentation than releasing a 
single 100,000-byte object once per second.
a. Understanding the release of memory is much 

more difficult than understanding memory allo-
cation. The Java assignment statement:

pointer = null;

indicates that the object previously referenced 
by the pointer variable is no longer referenced 
from pointer. However, in order to determine 
which object is referenced from pointer, and even 
to know what the type and size of that object is, 
we need to retrace the history of the pointer vari-
able to determine the origin of its value. This 
sort of problem has been studied previously by 
computer scientists, and it is well known that the 
general solution is intractable. Thus, the prob-
lem cannot be solved by a static analysis sys-
tem unless programmers restrict themselves to 
a style of programming that can be analyzed 
automatically.

b. Even if it were known exactly which object is 
referenced by the pointer variable in the example 
statement above, removing pointer’s reference to 
the object does not necessarily make the object 
available to be reclaimed by the garbage collec-
tor. The garbage collector can only reclaim the 
object after all references to the object have 



been cleared. Thus, the analysis of which 
objects are released at which time must also 
include a full aliasing analysis, to prove that all 
aliases referring to a particular object no longer 
refer to that object in order to assert that the 
garbage collector can reclaim a particular object 
at a particular time.

c. All of the analyses required to prove the timely 
release of objects are global in nature. In gen-
eral, they span multiple methods, multiple class 
definitions, and multiple threads. The global 
nature of the analyses makes the analyses very 
difficult and very brittle. The analyses are brittle 
in the sense that once the analyses are com-
pleted, they are not robust to the many small 
incremental changes to the application that are 
typical of modern software maintenance activi-
ties. Changing a single line of code can have 
tremendous impact on the results of these anal-
yses, totally invalidating any proofs of memory 
allocation behavior that might have been based 
on the original analyses.

For all of the reasons discussed above, Atego gener-
ally recommends against reliance on a garbage col-
lector in hard real-time and safety critical code. 
Certainly, it is possible to build hard real-time software 
and even safety-critical software on top of a real-time 
garbage collector. But such a pursuit is mainly of aca-
demic interest. Either the programmers would be so 
restricted in their use of dynamic memory that they 
would not benefit from the full generality of automatic 
tracing garbage collection, or the certification and 
maintenance costs would be prohibitive.

7. Safe Stack Allocation for Hard Real-Time and 
Safety-Critical Systems

Even though traditional hard real-time systems have 
not made use of a dynamic memory allocation heap, 
they have generally made use of modern block struc-
ture to create local variables and structured data on 
each thread (or task) stack. A similar approach has 
been designed to allow Java programmers to specify 
through the use of certain programming annotations 
that certain objects are to be allocated on the run-time 
stack. The most well-known design of stack-allocated 
Java memory allocation system is found in the Real-
Time Specification for Java [5]. The approach 
described below provides higher levels of abstraction. 
It is described more completely in [6, 7, 8]. Experience 
with this approach is reported in [9].

Programmers use annotations to associate attributes 
with the reference variables in a Java program. These 
annotations can be ignored when the code is com-
piled for deployment with a traditional Java virtual 
machine. However, when the code is deployed in a 
hard real-time or safety-critical environment, the 
annotations allow the safety-critical Java compiler to 
direct every allocation request to a specific region of 
memory. Regions are organized as a LIFO stack. And 
a special byte-code verification technique assures 
that no reference to a region-allocated object lives in a 
region that has a longer lifetime than the region that 
holds the object itself.

The following implementation of a complex number 
abstraction demonstrates the use of annotations to 
influence memory allocation behavior:

public class Complex { 
float real, imaginary;

@ScopedThis public Complex(float r, float i) {
real = r;
imaginary = i;

}

@CallerAllocatedResult @ScopedPure 
public Complex multiply(Complex arg) {

float r, i;
r = this.real * arg.real - this.imaginary * arg.imaginary;
i = this.real * arg.imaginary + arg.real * this.imaginary;
return new Complex(r, i);

}
}

In the above example, the constructor is annotated 
@ScopedThis to indicate that this constructor can be 
used to instantiate a Complex object within “scoped” 
memory. The verifier assures that, within this con-
structor, the value of the implicit this variable is never 
copied into an instance or static variable that might 
live longer than the scope-allocated Complex object 
itself.

The @ScopedPure annotation on the multiply method 
indicates that both the implicit this and explicit arg argu-
ments may refer to objects residing in scoped mem-
ory, and the verifier assures that, within this method, 
neither is copied into an instance or static variable that 
might live longer than the scope-allocated objects 
they refer to.

The @CallerAllocatedResult annotation on the multiply
method indicates that the object returned from this 
method shall be allocated in the scope indicated by 
the caller rather than within the method’s local scope. 
If it were allocated in the method’s local scope, the 
object would be reclaimed upon return from the 
method, and the reference value returned from the 
method would be considered a dangling pointer. Thus, 
the verifier would reject this implementation of the mul-
tiply method if the @CallerAllocatedResult annotation had 
been omitted from the method’s declaration.

A special byte-code verifier for hard real-time scopeal-
located Java has been integrated within the Eclipse 
development environment, as illustrated in Figure 5. 
When programmers save their files, the Eclipse build 
system automatically invokes the verifier and any 



errors detected by the enhanced byte-code verifier 
are immediately displayed within the Eclipse edit win-
dow. This gives immediate feedback to developers of 
hard real-time Java code regarding possible violations 
of scope-oriented memory allocation protocols.

8. Summary
The full benefits of standard edition Java, including 
automatic garbage collection and traditional API 
libraries, are available to developers of soft real-time 
systems who choose to deploy their Java applications 
on a virtual machine that has been implemented to 
support real-time operation. The key enablers for this 
capability include real-time garbage collection, prior-
ity-based scheduling, priority-ordered thread queues 
and priority inheritance for synchronization.

Hard real time is characterized as systems that must 
be proven to satisfy all timing constraints. Tests and 
demonstrations of compliance with timing constraints 
do not generally constitute proofs unless the tests and 
demonstrations have been carefully analyzed to prove 
that they represent the worst-case execution scenar-
ios. Java developers who need to satisfy hard real-
time constraints or safety certification requirements 
are advised to avoid dependencies on tracing gar-
bage collection because of the high costs of develop-
ing and maintaining proofs of compliance with 
specified constraints. Instead, such developers are 
advised to use a hard real-time version of Java which 

Figure 5. Hard Real-Time Java Development Environment
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