
Dynamic Memory Management in High-Integrity Java Systems
Kelvin Nilsen, Ph.D.

Aonix North America
125 E. Main St., #501

American Fork, UT 84003
(+1) 801-756-4821
kelvin@aonix.com
Abstract: The Java programming language [1],
widely recognized as the preferred programming lan-
guage for all varieties of information processing appli-
cations, typically manifests a two-fold improvement in
developer productivity and a five- to ten-fold improve-
ment in software reuse, integration, and maintenance
activities in comparison with legacy systems built
using C or C++. Java is especially relevant to multi-
processor applications, as the language has built-in
support for multithreading, synchronization, and
shared access to common objects.

The full power of Java is relevant to many high integ-
rity systems, including applications in ballistic missile
defense, radar subsystems in support of air traffic
control, and rail traffic scheduling. But using Java in
these sorts of high integrity applications requires spe-
cial attention to selection of an appropriate Java vir-
tual machine and special development methodologies
[2, 3].

This paper discusses some of the special challenges
of using Java in high integrity real-time systems, along
with recommended practices for dealing with these
challenges.

Keywords: Java, real-time Java, hard real time, soft
real time, safety certification, high-integrity Java, real-
time specification for Java

1. Relevance of Dynamic Memory Management
The designers of the object-oriented Java language
made a distinction between primitive types and
objects. Variables representing the primitive types,
which include int, char, float, and double, are always
allocated on the Java thread’s stack. Java variables
representing objects are really just references (point-
ers). The Java objects referred to by Java reference
variables are generally allocated from a garbage-col-
lected heap.1 The syntax of Java makes it very clear
when objects are allocated. However, a cursory
review of Java source code may overlook many of the

1. Sophisticated compiler optimizations are able to
detect that many temporary objects can be allo-
cated and reclaimed from the thread’s stack mem-
ory.
allocations that it embodies. Each of the Java source
code examples shown below results in allocation of at
least one object:

// Explicit allocation of HashMap
HashMap m = new HashMap();

// Implicit allocation of StringBuilder and String
System.out.println(“the answer is “ + x);

// Implicit allocation of Integer(13) if foo() is declared to expect
// an object argument. This is known as auto-boxing.
// void foo(Integer);
foo(13);

// Implicit allocation and initialization of an Object[3] array, and
// the three Integer objects to be represented by this array if
// the baz() method is declared to expect a variable number
// of arguments. This also is known as auto-boxing.
baz(1, 2, 3);

// Probably does an allocation of internal data “record” to
// represent the pairing between key and value within the
// hash table represented by the variable m. The specification
// for this method does not make clear when internal data
// structures are allocated.
m.put(key, value);

In Java, it is not considered important to syntactically
identify every object allocation because the program-
mer who writes code to force creation of objects is not
responsible for reclaiming the object’s memory when
the object is no longer required. Instead, the tracing
garbage collector takes full responsibility for automati-
cally detecting the death of objects and reclaiming
their memory.

The Java style of dynamic memory management has
numerous benefits over the more traditional approach
of explicitly allocating and deallocating objects as is
done in Ada, C, and C++. Particular benefits of the
Java approach are identified below:

No dangling pointers. The term dangling pointer
refers to a situation in which a pointer to an object per-
sists longer than the object itself. Once the object is
deallocated, any pointers that still refer to that object
are considered to “dangle”, because they point to
memory that is no longer dedicated to the intended
purpose.

Full type safety. Unlike Ada, C, and C++, Java
guarantees that a variable declared as a reference to
a particular type only points to objects of that type.
Languages that permit dangling pointers generally
allow the possibility that a deallocated object will be
reallocated as a different type that is incompatible with
the original object. After the deallocated object’s
memory is reallocated, dangling pointers to the origi-
nal object now refer to the “wrong type”.

Avoidance of memory leaks. The term memory
leak represents a situation in which allocated objects
are never reclaimed, even after they no longer serve a
useful purpose. With Java, an “accurate” garbage col-
lector guarantees to find all garbage, where garbage
is defined as objects that are not reachable by follow-
ing a chain of pointers starting with one of the sys-
tem’s root pointers and comprising zero or more non-
garbage objects. Not all Java garbage collectors
promise to accurately identify all garbage, but those
designed for mission critical operation in limited mem-
ory embedded systems generally do. It is important to
recognize that memory leaks may exist even in sys-
tems that incorporate an accurate garbage collector.
This is because certain objects which are considered
live (reachable) by the garbage collector may actually
have no useful role in ongoing computations. Though
Java programmers do not explicitly deallocate dead
objects, it is important that they overwrite references
to objects no longer needed with null in order to
enable the garbage collector to reclaim their memory.

Memory defragmentation. With explicitly man-
aged memory heaps, the allocation pool may become
fragmented over time. Once the heap has become
fragmented, allocation requests may fail even though
there may exist an abundance of available memory.
The integration of a garbage collector within the
implementation of Java makes it possible to imple-
ment memory defragmentation as a peripheral benefit
of garbage collection. Not all Java garbage collectors
defragment memory, but those designed to support
mission critical operation in limited-memory embed-
ded devices generally do.

Ease of integration. An important attribute of
object-oriented programming environments is the abil-
ity to easily integrate independently developed soft-
ware components. With legacy languages, a difficulty
of integrating independently developed components is
that each new integration requires the design and
implementation of a tailored protocol to allow deallo-
cation of the objects allocated by one component but
accessed by other components after the objects are
no longer needed by any components. Designing,
implementing, and debugging these protocols is very
difficult, and this represents a significant impediment
to the creation of large software systems through
modular composition of independently developed
components.
2. High Integrity Garbage Collection
When mission-critical systems are deployed as tradi-
tional Java applications, the underlying Java virtual
machine’s garbage collection system plays a critical
role in overall reliability, real-time responsiveness, and
ultimately in the system’s ability to fulfill its mission.

Garbage collectors designed to support mission-criti-
cal operation must address the following issues:

1. Preemptible: if a higher priority activity needs to
run while garbage collection is active, the higher
priority activity must be able to preempt garbage
collection within a predictably small amount of
time.

2. Incremental: Whenever garbage collection is pre-
empted, it is important that the increments of work
completed prior to the preemption are preserved
and the garbage collector’s progress continues to
advance when garbage collection resumes. Other-
wise, it is not possible to guarantee forward
progress, which is necessary to assure availability
of memory to satisfy future allocation requests.

3. Accurate: The garbage collector must guarantee to
accurately find and reclaim all of the dead memory
in the system. If a dead object is not reclaimed by
the garbage collector, all of the objects reachable
from that dead object, many of which may also be
dead, will necessarily be retained as if they were
alive. Thus, an inaccurate (also known as conser-
vative) garbage collector cannot guarantee avail-
ability of memory to satisfy future allocation
requests.

4. Defragmenting: Over time, the interleaving of
memory allocation and deallocation operations
may create a situation in which the memory alloca-
tion pool consists of a large number of small free
segments separated from one another by in-use
objects. In the presence of memory fragmentation,
the allocation pool may contain many megabytes
of available memory, but an allocation request for
an object of size 256 Kbytes could fail because no
single segment of free memory is sufficiently large.
A garbage collection system designed to support
mission-critical execution must defragment mem-
ory or provide some mechanism to mitigate the
effects of memory fragmentation.

5. Paced: To support real-time operation of mission-
critical threads which depend on the ability to allo-
cate memory in fulfilling their mission-critical objec-
tives, it is essential that the garbage collector
reclaim memory at a pace that is consistent with
the application’s appetite for new memory alloca-
tion. Otherwise, the mission-critical thread that
attempts to allocate memory could become
blocked waiting for the garbage collector to reclaim
enough memory to satisfy its allocation request.

3. A Mission-Critical Garbage Collector
The PERC® Ultra virtual machine has been perform-
ing real-time garbage collection in a large number of
highly available applications for over a decade. Here,
we provide a high-level overview of real-time garbage
collection as it is performed by the PERC Ultra virtual
machine.

The PERC garbage collector uses a combination of
mark-and-sweep and copying garbage collection
techniques. Mark-and-sweep garbage collection is
illustrated in Figure 1. In this illustration, the blue
objects represent the free pool. The PERC allocator
maintains several free lists, each one dedicated to dif-
ferent size ranges. For illustrative purposes, only one
free list is shown here. The free lists are doubly linked
to allow free segments to be removed, coalesced with
newly found neighboring garbage, and inserted onto
an alternative free list in constant time.

Black arrows represent references (pointers) from one
object to another. Red arrows represent links on the
scan list, a list that represents all of the objects that
the garbage collector has marked as being in use.
The garbage collector starts its search for in-use
objects by marking the objects that are referenced
directly from the root pointers. Then it scans those
objects to see what they point to, and marks each of
those objects as in-use also. It continues this process
until all marked objects have been scanned. At this
point, any memory that is not on the free list and is not

Figure 1. Incremental Mark and Sweep Garbage Collection

Root
Pointers:

Scan Head: Scan Tail:Free Lists:

Marked Free (on list)Scanned

A

B

C D

E

marked is treated as garbage. All such memory is
linked onto the free list.

The red objects represent objects that the garbage
collector has identified as being in use (live or reach-
able, and thus retained). Every object recognized as
live is placed on a scan list linked through the scan-list
field within the object’s header. The act of placing an
object on the scan list is known as marking. A marked
object is identified by a non-null value in the scan-list
field of the object’s header.

The scan list is represented by head and tail pointers.
When a new object is marked, it is added to the tail of
the existing list. For each object on the scan list, the
garbage collector examines (scans) the object’s con-
tents to determine which additional objects might be
referenced by this object. The garbage collector
marks each object referenced from this marked object
if that referenced object is not already marked.
Figure 1 distinguishes objects that have been
scanned from those that have been marked but not
yet scanned.

Figure 1 represents a snapshot of the garbage collec-
tor’s incremental progress. At the time of the snap-
shot, object A is considered marked and scanned.
Objects B and C are marked but not yet scanned. The
scan list holds only objects B and C. When garbage
collection resumes, the collector will scan object B,
which results in the marking of object D.

With traditional stop-and-wait garbage collectors, all
application threads are suspended while garbage col-
lection is performed. Though this simplifies garbage
collection, the delays on application thread processing
imposed by stop-and-wait garbage collectors can be
quite long, lasting tens of seconds for gigabyte-sized
heaps. The PERC garbage collector avoids these
delays by allowing application threads to preempt the
garbage collector.

Suppose, while the garbage collector is suspended in
the state illustrated by Figure 1, that an application
thread performs the following sequence of actions:

1. Fetch the reference to object D into a local variable
by reading the relevant field of object B.

2. Overwrite the same field of object B with the value
null.

3. Copy the object D reference from its local variable
into a field of object A.

4. Overwrite the local variable that refers to object D
with a null value.

Following this sequence, the object D is still live,
because it is reachable from A, which is live. However,
when the garbage collector resumes operation, it will
not scan object A, because object A previously
scanned. To make the mark-and-sweep garbage col-
lection technique incremental, the PERC virtual

machine incorporates a write barrier. Each time a
pointer field of an object is overwritten, the virtual
machine marks the object referenced by the new
value of the pointer field.

Copying garbage collection is shown in Figure 2. With
copying garbage collection, live objects are incremen-
tally copied out of one region of memory, named from-
space, into another region of memory, named to-space.
In this illustration, there are three live objects A, B, and
C. Objects B and C have been copied to consecutive
memory locations in to-space, represented by the
objects labeled B’ and C’ respectively. Memory has
been reserved for copying object A to the location
labeled A’, but that object has not yet been copied.

After all live objects have been copied out of from-
space, we exchange the names given to to-space and
from-space, and satisfy subsequent allocation
requests from the new to-space. This has the effect of
defragmenting the free pool. Note that the four
unused memory segments in the original from-space
are now combined into one large contiguous free seg-
ment in the new to-space.

If a high-priority thread preempts copying garbage col-
lection in the state illustrated by Figure 2, the PERC
virtual machine will redirect that thread’s attempts to
access object A’ to object A. Likewise, it will redirect all
attempts to access objects B or C to objects B’ and C’
respectively. The PERC virtual machine uses both
read and write barriers to make this incremental copy-
ing garbage collection work reliably.

A key benefit of copying garbage collection is that it
fully defragments memory with each pass of the gar-
bage collector. However, the cost of providing this
benefit is that memory utilization can never be any
higher than 50%. In contrast, mark-and-sweep gar-
bage collection typically achieves utilization of 60-
75%. However, because it does not defragment mem-
ory, the worst-case utilization of a mark-and-sweep
garbage collector may be arbitrarily poor (less than
5%). To combine the good average-case utilization of

Figure 2. Fully Copying Garbage Collection

A B C

C’ B’ A’

from-
space

to-
space

ReservedRelocated
mark-and-sweep garbage collection with the reliability
guarantees of copying garbage collection, the PERC
virtual machine uses a mostly stationary garbage col-
lection technique, illustrated in Figure 3. All of memory
is divided into N equal-sized regions. Each time the
PERC virtual machine begins another garbage collec-
tion pass, it applies a number of heuristics to select
one of the regions to be defragmented. When config-
uring the PERC virtual machine, system integrators
can set the number of regions to two so that all of
memory is defragmented on each garbage collection
pass, or can disable defragmentation entirely to maxi-
mize expected memory utilization. This allows system
integrators to tune the PERC virtual machine for the
levels of reliability and memory efficiency that are
most appropriate for their given application.

4. Pacing Garbage Collection
The goals of real-time garbage collection are to
make sure memory is available for allocation at
the times the application needs to allocate with-
out interfering with any task’s compliance with
real-time constraints. A real-time garbage collec-
tor must work incrementally, dividing its total
effort into many small bursts of work. These
bursts of work must be scheduled using the real-
time scheduler so as to make sure that the real-
time garbage collector makes timely forward
progress while at the same time making sure that
the garbage collector’s CPU-time utilization does
not intrude upon times set aside for execution of
application software.

In order to make sure that garbage collection
makes adequate forward progress, the total effort
required to perform complete garbage collection

Figure 3. Incremental Mark and Sweep Garbage Collection

A

B

C D

E

from-spaceto-space

Mark and Sweep Regions

must be understood. Suppose, for example, that
the total available memory is M bytes and that
complete garbage collection is known to require
S seconds of CPU-time. Suppose further that the
total memory requirement of the system’s real-
time activities is U total bytes, and that the com-
bined allocation throughput is V total bytes of
allocation per second. Finally, let R represent the
fraction of the CPU time that is dedicated to gar-
bage collection. Note that the real time required
to complete incremental garbage collection is S /
R.

Consider the state of memory immediately fol-
lowing completion of garbage collection. In the
worst steady-state case, there are a total of U
bytes of live memory and V (S / R) bytes of dead
memory currently occupying the heap. If we start
the next garbage collection pass as soon as the
first has completed, an additional V (S / R) bytes
of memory will be allocated while this garbage
collection pass is executing. Thus, the size of the
space required to support this workload, M, mea-
sured in bytes, must be greater than or equal to
U + 2V(S/R). Based on the combined total mem-
ory requirement and maximum allocation rates
described above, the minimum fraction of CPU
time that must be spent in garbage collection is
given by:

Note that R is proportional to the maximum rate
at which memory is allocated multiplied by the
total time required to perform a stop-and-wait
garbage collection pass. R is inversely propor-
tional to the difference between the total amount
of available memory and the maximum amount
of live memory.

When targeting a virtual machine designed to
support deployment of high integrity Java appli-
cations, it is important that the virtual machine
vendor be able to quantify upper bounds on the
amount of CPU time required to perform a com-
plete garbage collection, and offer the ability to
control when this CPU time is consumed, at what
priorities, and at what preemption latency.

At the same time, a complete analysis of the sys-
tem’s real-time behavior also requires that devel-
opers obtain upper bounds on the amount of
memory retained as live by the application, and
on the rate at which new objects are allocated.

The objective of garbage collection pacing is to
make sure that garbage collection gets enough

R 2VS() M U–()⁄≥
increments of CPU time to make sure it consis-
tently replenishes the allocation pool before the
available supply of memory has been exhausted.
Figure 4 shows a simulated air traffic control
workload with real-time garbage collection run-
ning under the direction of a real-time pacing
agent. This particular application is running in a
fairly predictable steady state as characterized
by the following observations. First, the slope of
the yellow chart, which represents the amount of
memory available for allocation, is roughly con-
stant whenever garbage collection is idle. This
means the application’s allocation rate is approx-
imately constant. Second, the heights of the yel-
low chart’s peaks are roughly identical. This
means the amount of live memory retained by
the application is roughly constant. In other
words, the application is allocating new objects at
approximately the same rate it is discarding old
objects. Finally, the percentage of CPU time
required for application processing is well
behaved, ranging from about 20% to 50%.

Note that garbage collection is idle most of the
time. As memory becomes more scarce, garbage
collection begins to run. When garbage collection
runs, it interferes with some, but not all, of the
real-time application processing. For this reason,
a slight dip in application processing each time
the garbage collector, represented by the occa-
sional red upward spikes, runs is evident. Also
evident is a tendency for application processing
to briefly increase following each burst of gar-
bage collection. This is because the preempted
application needs to perform a small amount of
extra work to catch up with real-time scheduling
constraints following each preemption. If properly
configured, the pacing agent will carefully avoid

Figure 4. Pacing of Garbage Collection

delaying the application threads by any more
than the allowed scheduling jitter.

5. Multiprocessor Considerations
The Java language specification includes compro-
mises intended to enable portable deployment of the
Java run-time environment on many different CPU
architectures and operating systems. One such com-
promise is the restriction to only ten priorities, with no
guarantee that higher priority threads will be sched-
uled ahead of lower priority threads. Further, the Java
language specification does not guarantee that Java’s
built-in synchronization locks will implement priority
inheritance.

Vendors of Java virtual machines targeted to high
integrity real-time applications generally constrain
scheduling and synchronization behavior beyond
what is required by the Java Language Specification.
Nevertheless, it is important to understand the sched-
uling model implemented by a particular Java Virtual
Machine and tailor application code to that model.

1. How many priorities does the virtual machine sup-
port?

2. Does the virtual machine’s scheduler strictly honor
priorities?

3. Does the virtual machine provide API support to
bind particular Java threads to specific processor
cores or core subsets?

4. Does the virtual machine allow developers to bind
particular threads to particular processors?

5. Does the virtual machine implement priority inherit-
ance? How does the virtual machine characterize
priority inheritance behavior on a multiprocessor
system if some threads are bound to particular
cores?

6. How concurrent is garbage collection? For a given
heap size, does multi-core garbage collection of
that heap run N times faster than single-processor
garbage collection, where N is the number of pro-
cessor cores? If not N times faster, what are the
limiting factors?

7. Are all of the virtual machine’s background infra-
structure activities, including garbage collection
and JIT compilation, easily understood and analyz-
able as part of the complete system’s real-time
workload?

8. Depending on the underlying scheduling mecha-
nism, what is the theory for analysis of schedulabil-
ity?

Note that analysis of real-time scheduling becomes
much more difficult on a multiprocessor system and
considerable care must be exercised to assure com-
pliance with hard real-time deadlines. One difficulty
results from tension between the main-stream objec-
tive of optimizing throughput and the real-time objec-
tive of assuring predictable scheduling behavior. To
achieve optimal throughput, it is desirable to reduce
the frequent migration of threads from one processor
to another. However, this objective contradicts the
neeed of real-time scheduling to always dedicate
resources to the highest priority threads that are ready
to run. Further, the analysis of a thread’s worst-case
execution time may be significantly affected if the
thread is allowed to migrate from one processor to
another. One way to address these tensions is to
allow programmers to bind certain threads to particu-
lar processors. This reduces the scheduling uncer-
tainty that results from automatic load balancing. The
analysis of real-time schedulability can be done inde-
pendently for one processor at a time. However, this
approach introduces a different problem. Specifically,
if a thread bound to one processor attempts to lock a
resource that is shared with other processors, there is
a risk of priority inversion. If a low-priority thread run-
ning on one processor holds a lock on a resource that
is required by a high priority thread running on a differ-
ent processor, the traditional approach to resolving
this contention uses priority inheritance to boost the
priority of the locking thread so that it can quickly get
out of the way of the high-priority thread that desires
access to the locked resource. When each thread is
bound to a different processor, traditional priority
inheritance does not work.

There is not universal agreement on the single best
way to structure real-time threads for predictable and
deterministic operation on a multiprocessor platform.
The most important consideration is that these issues
cannot be ignored. Architects, designers, and system
integrators need to carefully consider the structure of
their application code and the precise semantics of
the services provided by the underlying platform in
order to assure a reliable and maintainable integra-
tion. Additional discussion on topics relevant to multi-
processor embedded Java deployments is available
in reference [4].

6. Garbage Collection in Hard Real-Time and
Safety Critical Systems

In both hard real-time and safety critical systems,
there is a general expectation that the system is
proven to operate within real-time constraints. All tim-
ing constraints will be satisfied, and all specified
actions will be performed within the specified timing
constraints, even actions that require allocation of
temporary objects.

Traditionally, hard real-time and safety critical systems
have avoided all use of a dynamically managed mem-
ory allocation heap because the analysis of memory
management services is very difficult. In particular,
allocating an object of a particular size may require a
search for a best fit or a first fit within a very long list of
available free segments. The time required to suc-
cessfully find the desired free segment is unpredict-

able. And even if the developers have carefully
proven that a sufficient amount of memory has been
deallocated to support a subsequent memory alloca-
tion request, there is usually no guarantee that the
memory allocation request will succeed because
memory may have become fragmented.

Since modern automatic garbage collection systems
are capable of defragmenting memory, some garbage
collection enthusiasts have promoted the use of auto-
matic garbage collection in support of low-level hard
real-time and safety-critical code. While their argu-
ment that a real-time garbage collector can be proven
to be as safe and reliable as stack memory allocation
is perfectly valid, this argument tends to ignore some
of the larger issues associated with dynamic memory
management.

In particular, to use garbage collection in a hard real-
time or safety critical system, you must prove not only
that the garbage collection implementation is fully
deterministic, but you must also prove that the appli-
cation’s interaction with the garbage collector is fully
consistent with the demands placed on the garbage
collector by the application.

Proving that a real-time garbage collector behaves
deterministically with respect to CPU time consump-
tion, latency between object release and recycling of
the object’s memory, relocation and coalescing of
independent free memory fragments, and the time
required to respond to each allocation request is all
relatively straightforward, though such proofs may be
tedious and very costly. The more difficult proof deals
with the application’s behavior. All of the following
considerations must be addressed:

1. Either the application needs to reallocate memory
under real-time constraints or it does not.
a. If the application performs no memory realloca-

tion, then it is difficult to justify the presence of a
real-time garbage collector because of the com-
plexity it adds to the system, and the very high
costs of certifying the correct behavior of the
garbage collector. If the application does not
reallocate memory, the entirety of garbage col-
lection might be considered “dead code”.

b. If the real-time workload depends on an ability
to reallocate memory, then the developer must
“prove” that the application has made sufficient
memory available to be reallocated, and has
done so with sufficient lead time to allow the
garbage collector to recycle the memory before
the application demands to reallocate it.

2. One important attribute of the application that must
be analyzed is the sizes and timings of each mem-
ory alloccation request. In a macro view, this can
be represented as a simple ratio between bytes
allocated per unit of wall-clock time. However, this
macro view may hide potential fragmentation
issues. With respect to memory fragmentation,
allocating a 1,000-byte object every 10 ms is very
different than allocating a single 100,000-byte
object once per second.
a. Understanding the allocation demand is com-

paratively easy. For any valid control flow
through any of the workload’s real-time tasks, if
the flow includes an allocation operation, add
the corresponding allocation to the cumulative
allocation demand.

b. Note, of course, that a tight bound on allocation
demand requires significantly more effort than
accumulating all of the allocation requests on all
possible control paths through each real-time
task. This is because many of the control paths
may be mutually exclusive, but determining the
conditions on which particular paths will be
taken is generally very difficult.

3. The second important attribute that must be ana-
lyzed by the application developers is the sizes
and timings of object releases. In a garbage collec-
tion environment, an object is considered to be
released when no other non-released (live) object
points to it. In a macro view, object releases can
also be characterized as a simple ratio between
bytes freed per unit of time. As with the allocation
rate, this macro view may ignore certain memory
fragmentation considerations. Releasing one
1,000-byte object every 10 ms may contribute to
significantly more fragmentation than releasing a
single 100,000-byte object once per second.
a. Understanding the release of memory is much

more difficult than understanding memory allo-
cation. The Java assignment statement:

pointer = null;

indicates that the object previously referenced
by the pointer variable is no longer referenced
from pointer. However, in order to determine
which object is referenced from pointer, and even
to know what the type and size of that object is,
we need to retrace the history of the pointer vari-
able to determine the origin of its value. This
sort of problem has been studied previously by
computer scientists, and it is well known that the
general solution is intractable. Thus, the prob-
lem cannot be solved by a static analysis sys-
tem unless programmers restrict themselves to
a style of programming that can be analyzed
automatically.

b. Even if it were known exactly which object is
referenced by the pointer variable in the example
statement above, removing pointer’s reference to
the object does not necessarily make the object
available to be reclaimed by the garbage collec-
tor. The garbage collector can only reclaim the
object after all references to the object have

been cleared. Thus, the analysis of which
objects are released at which time must also
include a full aliasing analysis, to prove that all
aliases referring to a particular object no longer
refer to that object in order to assert that the
garbage collector can reclaim a particular object
at a particular time.

c. All of the analyses required to prove the timely
release of objects are global in nature. In gen-
eral, they span multiple methods, multiple class
definitions, and multiple threads. The global
nature of the analyses makes the analyses very
difficult and very brittle. The analyses are brittle
in the sense that once the analyses are com-
pleted, they are not robust to the many small
incremental changes to the application that are
typical of modern software maintenance activi-
ties. Changing a single line of code can have
tremendous impact on the results of these anal-
yses, totally invalidating any proofs of memory
allocation behavior that might have been based
on the original analyses.

For all of the reasons discussed above, Atego gener-
ally recommends against reliance on a garbage col-
lector in hard real-time and safety critical code.
Certainly, it is possible to build hard real-time software
and even safety-critical software on top of a real-time
garbage collector. But such a pursuit is mainly of aca-
demic interest. Either the programmers would be so
restricted in their use of dynamic memory that they
would not benefit from the full generality of automatic
tracing garbage collection, or the certification and
maintenance costs would be prohibitive.

7. Safe Stack Allocation for Hard Real-Time and
Safety-Critical Systems

Even though traditional hard real-time systems have
not made use of a dynamic memory allocation heap,
they have generally made use of modern block struc-
ture to create local variables and structured data on
each thread (or task) stack. A similar approach has
been designed to allow Java programmers to specify
through the use of certain programming annotations
that certain objects are to be allocated on the run-time
stack. The most well-known design of stack-allocated
Java memory allocation system is found in the Real-
Time Specification for Java [5]. The approach
described below provides higher levels of abstraction.
It is described more completely in [6, 7, 8]. Experience
with this approach is reported in [9].

Programmers use annotations to associate attributes
with the reference variables in a Java program. These
annotations can be ignored when the code is com-
piled for deployment with a traditional Java virtual
machine. However, when the code is deployed in a
hard real-time or safety-critical environment, the
annotations allow the safety-critical Java compiler to
direct every allocation request to a specific region of
memory. Regions are organized as a LIFO stack. And
a special byte-code verification technique assures
that no reference to a region-allocated object lives in a
region that has a longer lifetime than the region that
holds the object itself.

The following implementation of a complex number
abstraction demonstrates the use of annotations to
influence memory allocation behavior:

public class Complex {
float real, imaginary;

@ScopedThis public Complex(float r, float i) {
real = r;
imaginary = i;

}

@CallerAllocatedResult @ScopedPure
public Complex multiply(Complex arg) {

float r, i;
r = this.real * arg.real - this.imaginary * arg.imaginary;
i = this.real * arg.imaginary + arg.real * this.imaginary;
return new Complex(r, i);

}
}

In the above example, the constructor is annotated
@ScopedThis to indicate that this constructor can be
used to instantiate a Complex object within “scoped”
memory. The verifier assures that, within this con-
structor, the value of the implicit this variable is never
copied into an instance or static variable that might
live longer than the scope-allocated Complex object
itself.

The @ScopedPure annotation on the multiply method
indicates that both the implicit this and explicit arg argu-
ments may refer to objects residing in scoped mem-
ory, and the verifier assures that, within this method,
neither is copied into an instance or static variable that
might live longer than the scope-allocated objects
they refer to.

The @CallerAllocatedResult annotation on the multiply
method indicates that the object returned from this
method shall be allocated in the scope indicated by
the caller rather than within the method’s local scope.
If it were allocated in the method’s local scope, the
object would be reclaimed upon return from the
method, and the reference value returned from the
method would be considered a dangling pointer. Thus,
the verifier would reject this implementation of the mul-
tiply method if the @CallerAllocatedResult annotation had
been omitted from the method’s declaration.

A special byte-code verifier for hard real-time scopeal-
located Java has been integrated within the Eclipse
development environment, as illustrated in Figure 5.
When programmers save their files, the Eclipse build
system automatically invokes the verifier and any

errors detected by the enhanced byte-code verifier
are immediately displayed within the Eclipse edit win-
dow. This gives immediate feedback to developers of
hard real-time Java code regarding possible violations
of scope-oriented memory allocation protocols.

8. Summary
The full benefits of standard edition Java, including
automatic garbage collection and traditional API
libraries, are available to developers of soft real-time
systems who choose to deploy their Java applications
on a virtual machine that has been implemented to
support real-time operation. The key enablers for this
capability include real-time garbage collection, prior-
ity-based scheduling, priority-ordered thread queues
and priority inheritance for synchronization.

Hard real time is characterized as systems that must
be proven to satisfy all timing constraints. Tests and
demonstrations of compliance with timing constraints
do not generally constitute proofs unless the tests and
demonstrations have been carefully analyzed to prove
that they represent the worst-case execution scenar-
ios. Java developers who need to satisfy hard real-
time constraints or safety certification requirements
are advised to avoid dependencies on tracing gar-
bage collection because of the high costs of develop-
ing and maintaining proofs of compliance with
specified constraints. Instead, such developers are
advised to use a hard real-time version of Java which

Figure 5. Hard Real-Time Java Development Environment

Vanilla Java
Source Files with

Augmented
.class Files

Portable
C Source Files

Java .class
Files

Eclipse

Eclipse
jdtc

PERC Pico
builder

Eclipse
ANT

C tools
compile/link

Native Runtime
Object Files

Executable PERC
Pico Program

PERC Pico
verifier

PERC Pico
translator

PERC Pico
debugger

Real-Time Annotations
replaces automatic tracing garbage collection with
safe stack allocation.

9. References

[1] K. Arnold, J. Gosling, D. Holmes. The Java™ Pro-
gramming Language, 4th edition. 928 pages. Pren-
tice Hall PTR. Aug, 2005.

[2] K. Nilsen. “Applying COTS Java Benefits to Mis-
sion-Critical Real-Time Software”, Crosstalk The
Journal of Defense Software Engineering, pp. 19-
24. June 2007.

[3] K. Nilsen. “Using Java for Reusable Embedded
Real-Time Component Libraries”, Crosstalk The
Journal of Defense Software Engineering, pp. 13-
18. December 2004.

[4] “Six Design and Development Considerations for
Embedded Multicore Systems”, Atego White
Paper, July 21, 2009, www.atego.com.

[5] G. Bollella, B. Brosgol, J. Gosling, P. Dibble, S.
Furr, M. Turnbull, “The Real-Time Specification for
Java”, Addison Wesley Longman, 195 pages, Jan.
15, 2000.

[6] K. Nilsen, “Applying Java to the Domain of Hard
Real-Time Systems”, Conference Proceedings:
Embedded Real-Time Software, Toulouse, France,
May 2008.

[7] K. Nilsen. “Guidelines for Scalable Java Develop-
ment of Real-Time Systems”, March 2006, avail-
able at http://research.aonix.com/jsc.

[8] “PERC Pico 1.1 User Manual”, April 19, 2008,
available at http://research.aonix.com/jsc.

[9] M. Richard-Foy, T. Schoofs, E. Jenn, L. Gauthier,
K. Nilsen. “Use of PERC Pico for Safety Critical
Java”, Conference Proceedings: Embedded Real-
Time Software and Systems, Toulouse, France,
May 2010.

	Aonix North America 125 E. Main St., #501 American Fork, UT 84003 (+1) 801-756-4821
	kelvin@aonix.com
	1. Relevance of Dynamic Memory Management
	2. High Integrity Garbage Collection
	3. A Mission-Critical Garbage Collector
	Figure 1. Incremental Mark and Sweep Garbage Collection
	Figure 2. Fully Copying Garbage Collection
	Figure 3. Incremental Mark and Sweep Garbage Collection

	4. Pacing Garbage Collection
	Figure 4. Pacing of Garbage Collection

	5. Multiprocessor Considerations
	6. Garbage Collection in Hard Real-Time and Safety Critical Systems
	7. Safe Stack Allocation for Hard Real-Time and Safety-Critical Systems
	Figure 5. Hard Real-Time Java Development Environment

	8. Summary
	9. References

